skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kostetskyy, Pavlo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hongwei Wu (Ed.)
    Fast pyrolysis of lignocellulosic materials is a promising research area to produce renewable fuels and chemicals. Dehydration is known to be among the most important reaction families during cellulose pyrolysis; water is the most important product. Together with water, dehydration reactions also form a range of poorly known oligomer species of varying molecular sizes, often collected as part of the bio-oil water-soluble (WS) fraction. In this work, we used electronic structure calculations to evaluate the relative thermodynamic stabilities of several oligomer species from cellulose depolymerization intermediates undergoing three consecutive dehydration events. A library of the thermodynamically favored candidate molecular structures was compiled. Results revealed that most of the water molecules are eliminated from the non-reducing end, forming thermodynamically more stable conjugated compounds. This is consistent with results reported in literature where dehydration reactions occur preferably at the non-reducing ends of oligomers. The theoretical Fourier-Transform Infrared Spectroscopy and NMR spectra of these proposed sugar oligomers conform qualitatively to the experimental result of pyrolytic sugars. Understanding their chemical structure could help to develop rational strategies to mitigate coke formation as sugars are often blamed to cause coke formation during bio-oil refining. The estimated physical–chemical properties (boiling point, melting point, Gibbs free energy of formation, enthalpy of formation, and solubility parameters among others) are also fundamental to conducting first-principles engineering calculations to design and analyze new pyrolysis reactors and bio-oil up-grading units. 
    more » « less
  2. Hongwei Wu (Ed.)
    Pyrolytic lignin is a fraction of pyrolysis oil that contains a wide range of phenolic compounds that can be used as intermediates to produce fuels and chemicals. However, the characteristics of the raw lignin structure make it difficult to establish a pyrolysis mechanism and determine pyrolytic lignin structures. This study proposes dimer, trimer, and tetramer structures based on their relative thermodynamic stability for a hardwood lignin model in pyrolysis. Different configurations of oligomers were evaluated by varying the positions of the guaiacyl (G) and syringyl (S) units and the bonds βO4 and β5 in the hardwood model lignin through electronic structure calculations. The homolytic cleavage of βO4 bonds is assumed to occur and generate two free radical fragments. These can stabilize by taking hydrogen radicals that may be in solution during the intermediate liquid (pathway 1) formation before the thermal ejection. An alternative pathway (pathway 2) could occur when the radicals use intramolecular hydrogen, turning themselves into stable products. Subsequently, a demethylation reaction can take place, thus generating a methane molecule and new oligomeric lignin-derived molecules. The most probable resulting structures were studied. We used FTIR and NMR spectra of selected model compounds to evaluate our calculation approach. Thermophysical properties were calculated using group contribution methods. The results give insights into the lignin oligomer structures and how these molecules are formed. They also provide helpful information for the design of pyrolysis oil separation and upgrading equipment. 
    more » « less
  3. Rational design of catalysts for selective conversion of alcohols to olefins is key since product selectivity remains an issue due to competing etherification reactions. Using first principles calculations and chemical rules, we designed novel metal–oxide-protected metal nanoclusters (M 13 X 4 O 12 , with M = Cu, Ag, and Au and X = Al, Ga, and In) exhibiting strong Lewis acid sites on their surface, active for the selective formation of olefins from alcohols. These symmetrical nanocatalysts, due to their curvature, show unfavorable etherification chemistries, while favoring the olefin production. Furthermore, we determined that water removal and regeneration of the nanocatalysts is more feasible compared to the equivalent strong acid sites on solid acids used for alcohol dehydration. Our results demonstrate an exceptional stability of these new nanostructures with the most energetically favorable being Cu-based. Thus, the high selectivity and stability of these in-silico-predicted novel nanoclusters ( e.g. Cu 13 Al 4 O 12 ) make them attractive catalysts for the selective dehydration of alcohols to olefins. 
    more » « less